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This paper presents a new method to annul the squeal noise that is produced by
trains traversing a curve. The method is a special form of active control, applied to
suppress the bending oscillations of a squealing wheel. It is essentially a feedback
system with the following components: sensor, narrowband "lter, phase-shifter,
ampli"er and actuator. The control signal driving the actuator has only a single
frequency (set at the "lter), and that frequency typically corresponds to one of the
bending modes of the wheel. Two versions of the feedback system are considered.
In the "rst version, the actuator exerts a control force on the wheel, and in the
second version, the actuator imposes a velocity on the rail. A mathematical model
is presented and predictions are made for the performance of both versions. The
coupling of the di!erent wheel modes by the control system is discussed. A model
rig is described which was used for a practical demonstration of this form of active
control. Di!erences from more conventional forms of active control are pointed
out.

( 2000 Academic Press
1. INTRODUCTION

Curve squeal is one of the most disturbing types of noise from rail-based
public transport systems. The frequency spectrum of curve squeal is dominated
by a few (between 1 and 4) very sharp peaks. It is the frequency of the peaks
(typically between 1500 and 5000 Hz, where the human ear is very sensitive) and the
height of the peaks (more than 20 dB(A) above the rolling noise) which make curve
squeal such an unpleasant experience [1]. The need to control curve squeal is
evident.

Cure squeal is generated if a train traversing a bend performs a crabbing motion
with its wheels because they cannot align themselves tangentially to the rail. As
a consequence of this crabbing motion, a dry friction force acts on the wheels in the
lateral direction, this excites bending oscillations of the wheels, and they radiate
sound into the surrounding air [2}4].
0022-460X/00/030709#27 $35.00/0 ( 2000 Academic Press
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The dry friction force has a stick/slip behaviour and depends on the di!erence
between wheel and rail velocity. There is thus a feedback between the wheel
oscillation and the friction force driving this oscillation. This leads to some bending
modes becoming &&self-excited'' at their resonance frequencies, and these are found
as peaks in the frequency spectrum of curve squeal. The slip behaviour and the stick
behaviour of the friction force play two di!erent roles. The slip behaviour is
responsible for the instability of some wheel modes and drives them to grow
exponentially. This occurs at low-velocity amplitudes. The stick behaviour is
responsible for the limitation of this growth and imposes a limit cycle with a "nite
velocity amplitude. This occurs at velocity amplitudes that are high enough to be
close to the crabbing speed [5].

Many measures to reduce curve squeal have been put into practice. Remington's
article [4] contains a comprehensive overview. Wheel-related measures include
application of damping [1, 2, 4, 6}8], design of acoustically optimized wheels [6}8],
use of resilient wheels [3, 8], and use of trucks with some form of self-steering
[1, 3, 4, 8]. Rail-related measures include widening of squeal-prone curves [3,4].
Measures that involve the wheel/rail contact include lubrication of curved sections of
rail [1, 3, 4] and the use of friction modi"ers, which change the friction characteristic
in such a way that its instability-inducing tendency is countered [4].

The aim of this paper is to introduce and examine an alternative method of
controlling squeal. It involves a special form of active control, which suppresses the
instability of the wheel oscillation caused by the friction force. This form of active
control is not entirely new. It has been successfully applied to other instabilities,
such as the heat-driven noise of a Rijke tube [9], aerofoil #utter [10] and
compressor surge [11]. Its application to a simple friction-driven system (a
mass-spring oscillator with a single mode) has been studied theoretically by Heckl
and Abrahams [12]. The active control of a friction-driven wheel, oscillating with
several potentially unstable modes, is the topic of this paper.

Our form of active control di!ers from more conventional forms, in particular
anti-vibration techniques, by a few crucial points. Conventional techniques work
by superposition of a secondary vibration on a primary one in such a way that the
combined vibration is weaker than the primary one. Our method works by
interfering with the generation mechanism of the squeal: curve squeal is due to
unstable bending oscillations of a train wheel, and we use active control to stabilize
these oscillations. In contrast to our method, conventional techniques have high
energy requirements throughout their operation and their e!ectiveness is very
sensitive to errors in phase-shift and ampli"cation.

Two versions of our active control system will be studied. The "rst version (the
&&wheel version'') acts on the wheel and is shown in Figure 1(a); the second version
(the &&rail version'') acts on the rail and is shown in Figure 1(b). The wheel version
has the following components. A sensor (a structure-borne sound transducer that
senses the velocity of the wheel, or alternatively a microphone that senses the noise
radiated from the wheel) picks up a signal that is a measure of the wheel motion.
This signal is passed through a narrowband "lter, so that the "lter-output signal
has only a single frequency. This single-frequency signal is then phase-shifted and
ampli"ed. The resulting control signal is fed to a transducer attached to the wheel,



Figure 1. The active contol system: (a) control acting on the wheel; (b) control acting on the rail.
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and this exerts a control force that excites bending oscillations of the wheel. The
"lter frequency, phase-shift and ampli"cation are set at the instruments and remain
constant throughout. The "lter frequency is chosen to be identical with the squealing
frequency (or one of the squealing frequencies if there are several peaks in the
frequency spectrum of the squeal noise).

The rail version of the active control system di!ers from the wheel version only in
the way the control signal is applied. Here, the control signal is fed into a shaker
attached to the rail, which is assumed to have zero velocity if control were absent.
This version of the control changes the di!erence between wheel and rail velocity
and hence changes the behaviour of the friction force. In contrast, the wheel version
of the control applies an extra force to the wheel in addition to the friction force.

A general description of the mathematical model for curve squeal and its control
is given in Section 2. Two approaches are used to solve the integral equation that is
the governing equation of the model. An iteration scheme for the time history of the
wheel velocity is shown in Section 3. The complex eigenfrequencies of the wheel are
calculated in Section 4. These three sections are based on the mathematical model,
described in two companion papers [5, 13], which is extended to simulate the two
versions of the active control system. A simple energy analysis, yielding analytical
results for the stability behaviour, is shown in Section 5. In Section 6, numerical
results for the time history and the complex eigenfrequencies are presented.
A model rig has been constructed to simulate curve squeal, and to verify
experimentally the active control system; this is described in Section 7.

2. GENERAL FORMULATION OF THE MATHEMATICAL MODEL

The motion of a friction-driven wheel has been studied in detail by Heckl and
Abrahams [5]. They derived the following governing equation for the wheel
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velocity v
w

(see equation (2.3) in that paper, using notation F instead of F
f

for the
friction force, and v instead of v

w
for the wheel velocity),
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(r, u) is an observer point on the wheel and (r
f
, u

f
) is the contact point with the rail

where the friction force acts. F
f

is the friction force; it is dependent on the wheel
velocity at the contact point, and this dependence is called the friction
characteristic. G is the Green's function (displacement response) of the free wheel.
The dot indicates partial di!erentiation with respect to time t. The Green's function
is a superposition of bending modes of the wheel,
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u
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, d
mn

and g
mn

are respectively the allowed frequency, growth rate and amplitude
corresponding to mode (m, n) of the free wheel. These quantities can be measured
for any wheel, or calculated theoretically for some simple wheel geometries.

Equation (2.1) needs to be extended to give a governing equation which models
the active control of the friction-driven wheel.

2.1. WHEEL VERSION OF THE ACTIVE CONTROL SYSTEM

We consider the friction-driven wheel with the control system shown in Figure
1(a). The control force F

c
exerted by the transducer is modelled as a point force

(acting at point (r
c
, u

c
)), which acts in addition to the friction force (at point (r

f
, u

f
))

on the wheel. The motion of the wheel is then given by
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This is an extension of equation (2.1), in that the wheel response to the friction force
has been supplemented by that to the control force. In order to solve equation (2.3),
F
c
(t@ ) needs to be speci"ed.
The sensor picks up the wheel velocity at some point, say (r

f
, u

f
) (or some

measure of this velocity), which consists of a superposition of di!erent modes,
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with complex amplitudes A
mn

and frequencies X
mn

. The signal is passed through
a narrowband "lter tuned to one of the squeal frequencies, say X

MN
. This frequency

remains constant and is assumed to be equal to the eigenfrequency u
MN

of the free
wheel. The "lter output signal is real [A

MN
(t@ )e~iX

MNt{]; this signal is phase-shifted
by an amount / and ampli"ed by a factor a, generating a control signal which
represents the control force

F
c
(t@)"a real[A

MN
(t@)e~*(uMNt{`()]. (2.5)

The ampli"cation a and phase-shift / are those of the entire feedback loop,
including the sensor, "lter, phase-shifter, ampli"er and actuator. a is a ratio of force
to velocity; it can be varied at the ampli"er, but di!ers from the setting at the
ampli"er by an unknown (but constant) factor. The phase-shift / can be varied at
the phase-shifter; / di!ers from the phase-shifter setting by an unknown additive
constant.

The amplitude of the "lter output signal, A
MN

(t@ ), changes while the control is
acting: it decreases continuously if the control works successfully, but it remains
constant or even increases if the control system fails. The calculation of A

MN
(t@) is

shown in Section 2.3.

2.2. RAIL VERSION OF THE ACTIVE CONTROL SYSTEM

This version of the control is shown in Figure 1(b). The shaker changes the
velocity di!erence at the contact point by the rail velocity v

r
, and this a!ects the

friction force. The governing equation is
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This is an extension of equation (2.1), in that the argument of the friction force has
been supplemented by the rail velocity v

r
(t@). In order to solve equation (2.6), v

r
(t@)

needs to be speci"ed.
As for the wheel version of the active control, the control signal is a phase-shifted

and ampli"ed version of mode (M, N), which passes through the "lter. This control
signal represents the rail velocity.

v
r
(t@)"a real[A

MN
(t@)e~*(uMNt{`()]. (2.7)

Here, the ampli"cation a is the ratio between two velocities.

2.3. CALCULATION OF THE CONTROL SIGNAL AMPLITUDE

A
MN

(t@) is the complex amplitude of the "lter output signal. It varies slowly
within one period of the oscillation. A

MN
(t@) is calculated as follows. Mode (M, N) is



Figure 2. Time history of the wheel velocity.
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assumed to be the dominant mode of the time history of the wheel velocity
v
w
(r
f
, u

f
, t) (see Figure 2). This time history can then be approximated by a Fourier

series based on period ¹
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The Fourier coe$cient for k"1 is taken to be the required A
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A
MN

(t@) from equation (2.9) represents a good estimate for the amplitude of mode
(M, N) if this mode dominates over all the other modes; this is the case if (M, N) is
the only squealing mode. Otherwise, the result from equation (2.9) is also in#uenced
by other dominant modes, and a coupling between these modes arises. This
coupling is a feature of our control system, which can be tuned to only one
frequency.

3. ITERATION FOR THE TIME HISTORY OF THE WHEEL VELOCITY

This section develops a method to calculate the time history of the wheel
motion. It discretizes the time integrals for the wheel velocity to give an iteration
moving forward in time. The considerations are based on those in section 4 of
reference [5].
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3.1. WHEEL VERSION OF THE ACTIVE CONTROL SYSTEM

We start with the integral equation (2.3) and insert the time derivative of the
Green's function, using equation (2.2a) and the abbreviation

t
mn
"u

mn
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mn
, (3.1)

for its complex eigenfrequencies. The integral equation is then discretized with
small time steps Dt. It is assumed that both forces, the friction force and the control
force, are constant within each time step and can be approximated by the value
from the previous time step. The remaining integrals can be calculated analytically,
and the following iteration scheme for the time history of the wheel velocity (at
point (r
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)) is obtained:
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The friction force required in equation (3.3a) can be calculated from the friction
characteristic F

f
(v

w
) and the v

w
-value from the previous time step. The control force

required in equation (3.3b) is given by equation (2.5), where the control signal
amplitude is calculated by discretizing the integral in equation (2.9), also with the
time step Dt,
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This requires the v
w
-values of all time steps within the previous period.

The iteration starts at t"0, and the following initial conditions are assumed:

v
w
"0 at t"0, (3.5a)

F
c
"0 at t"0, Dt, 2Dt,2,¹

MN
(no control during the initial period).

(3.5b)
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3.2. RAIL VERSION OF THE ACTIVE CONTROL SYSTEM

Here, the considerations start with the integral equation (2.6). The manipulations
of this integral equation are the same as in section 3.1 and lead to the following
iteration scheme,
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The friction force required in this equation can be calculated from the friction
characteristic (now with an extra term in the argument), the v

w
-value from the

previous time step and the rail velocity given by equation (2.7). The control signal
amplitude is calculated in the same way as in the previous section, to yield equation
(3.4). The following initial conditions apply,

v
w
"0 at t"0, (iteration starts with zero velocity), (3.8a)

v
r
"0 at t"0, Dt, 2Dt,2,¹

MN
(no control during the initial period).

(3.8b)

4. COMPLEX EIGENFREQUENCIES OF THE CONTROLLED
FRICTION-DRIVEN WHEEL

In contrast to the considerations in Section 3, which allowed any friction
characteristic, we restrict our considerations in this section to linear friction
characteristics. Here the friction force is assumed to have a mean part F

0
and an

oscillatory part that depends linearly (factor c) on the velocity di!erence at the
wheel/rail contact point. The use of a linear friction force is valid at small oscillation
amplitudes where the velocity di!erence does not reach the crabbing speed, i.e.,
where the friction force exhibits only slip behaviour, but no stick behaviour. The
integral equations (2.3) and (2.6) for the wheel motion are then linear, and they can
be used as a basis to calculate the eigenfrequencies W

mn
of the controlled friction-

driven wheel. The derivation of the equations for the W
mn

is described in reference
[13] for a friction-driven wheel without any form of control. The method is
outlined for both versions of the active control system in Appendix A. Only a "nite
number of modes is considered (m"0,2k, n"1,2, l ). The W

mn
are generally

complex and composed of the real frequency X
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and the growth rate D
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,
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. (4.1)

The sign of D
mn

indicates the stability behaviour of mode (m, n): if D
mn
'0, the mode

is unstable, and if D
mn
)0, the mode is stable.
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4.1. WHEEL VERSION OF THE ACTIVE CONTROL SYSTEM

The friction force is assumed to depend linearly on the di!erence between wheel
velocity v

w
and rail velocity v

r
. Since v

r
is zero for this version of the control system,

the friction characteristic

F
f
"F

0
#cv

w
(4.2)

is used. If this is substituted into equation (2.3), a linear integral equation for v
w

is
obtained. The complex eigenfrequencies W
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are found to satisfy the following set of

non-linear algebraic equations (see Appendix A),
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with the abbreviation
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The asterisk denotes the complex conjugate. This equation can be solved
numerically (for example, with the Newton/Raphson method).

4.2. RAIL VERSION OF THE ACTIVE CONTOL SYSTEM

The linear dependence of the friction force on the di!erence between wheel and
rail velocity is expressed by the friction characteristic
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This is substituted into equation (2.6), and again a linear integral equation for v
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is
obtained. The complex eigenfrequencies W
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non-linear algebraic equations (see Appendix A):
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where the abbreviation C (W
mn

) is given by equation (4.4).
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5. ENERGY CONSIDERATIONS FOR SINGLE-MODE WHEELS

In this section, the wheel is modelled as a single-degree-of-freedom oscillator,
with frequency u

MN
, which is also the frequency set at the "lter; damping is

neglected. This is a rather crude approach, but it allows a purely analytical
treatment that gives insight into the physics of the active control system. The basis
is the oscillatory energy supplied to the wheel by the friction force and by the
control system. Again, the friction characteristic is assumed to be linear.

5.1. WHEEL VERSION OF THE ACTIVE CONTROL SYSTEM

The average energy change DE, caused by the friction force (at point (r
f
, u

f
)) and

the control force (at point (r
c
, u

c
)), is

DE"F
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w
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c
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c
, t). (5.1)

The overbar denotes the time average over one period of the oscillation. This
average energy change is an indicator for the stability of the wheel: the oscillation is
stable if DE(0, and unstable if DE'0. The wheel velocity at point (r

f
, u

f
) is taken

to be

v
w
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, t)"v
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cosu
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t. (5.2)

The point (r
c
, u

c
) is taken to be on the wheel edge opposite to the point (r

f
, u

f
) (see

Figure 3), so that the wheel velocity at that point can be stated from symmetry
considerations. As Figure 3 shows, the wheel oscillation is in phase for even
azimuthal mode numbers M (number of nodal lines), and out of phase for odd M;
therefore,

v
w
(r
c
, u

c
, t)"G

v
MN

cosu
MN

t if M is even,

!v
MN

cosu
MN

t if M is odd.
(5.3)
Figure 3. Examples of modes with even and odd azimuthal mode numbers M: (a) M"2; (b)
M"3.
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The time history of the friction force is obtained from a combination of equations
(4.2) and (5.2) to give

F
f
(t)"F

0
#cv

MN
cosu

MN
t . (5.4)

The control force, which is a phase-shifted and ampli"ed version of the wheel
velocity at (r

f
, u

f
), has the time history

F
c
(t)"av

MN
cos(u

MN
t!/). (5.5)

Substitution of equations (5.2)} (5.5) into equation (5.1) gives the average energy
change

DE"cv2
MN

1
2 A1$

a
c

cos/B , (5.6)

where the upper sign is for even mode numbers M, and the lower sign for odd M.
The wheel oscillation is

stable

unstable

if

1$
a
c

cos/(0,

1$
a
c

cos/'0.
(5.7)

The inequalities in equation (5.7) describe two areas, one of stability and one of
instability, in the a/-plane. The boundary between these two areas is given by the
curve

1$
a
c

cos/"0, (5.8)

or, in explicit form

a"G
c/cos(/!n) if M is even,

c/cos/ if M is odd.
(5.9)

They are both U-shaped curves with a maximum width of n, and a minimum at
a"c (see Figure 4(a) and (b)). Similar U-shaped curves have been found by Ffowcs
Williams and Huang [11] for the control of compressor surge.

5.2. RAIL VERSION OF THE ACTIVE CONTROL SYSTEM

The average energy change DE caused by the friction force, which is a!ected by
the control system, is given by

DE"F
f
(t)v

w
(r
f
, u

f
, t). (5.10)



Figure 4. Stability map of a single-mode wheel: (a) even azimuthal mode number M; (b) odd
azimuthal mode number M.
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The wheel velocity is given by equation (5.2). The control signal here is the rail
velocity, which is a phase-shifted and ampli"ed version of the wheel velocity, hence

v
r
(t)"av

MN
cos(u

MN
t!/ ). (5.11)

The time history of the friction force can then be obtained by substituting equations
(5.2) and (5.11) into equation (4.5),

F
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0
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MN
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MN
t!a cos(u

MN
t!/)]. (5.12)

With equations (5.2) and (5.12), the average energy change (5.10) becomes

DE"cv2
MN

1
2
(1!a cos/); (5.13)

this holds for all mode numbers. The wheel oscillation is

stable

unstable
if

1!a cos/(0,

1!a cos/'0.
(5.14)

Again, these inequalities describe an area of stability and one of instability in the
a/-plane. The boundary between these areas is given by the curve

a"
1

cos/
. (5.15)

This, too, is a U-shaped curve in the a/-plane with a maximum width of n. It is
centred around /"0. The minimum value of a is at a"1.

The performance of the two versions of the active control system is very similar.
Both are insensitive to errors in phase-shift and ampli"cation: the phase-shift just
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needs to be in a certain range (of width up to n), and the ampli"cation needs to be
above a certain minimum value.

6. NUMERICAL RESULTS

The equations in Sections 3 and 4 were solved numerically for a small model
wheel, shaped like a #at circular disc with a hub at the centre. It was made from
steel with the following material properties: o"8000 kg/m3 (mass density), E"

2]1011 N/m2 (Young's modulus), l"0)3 (Poisson ratio), and had the following
geometry: d"0)003 m (wheel thickness), a"0)038 m (wheel radius), b"0)01 m
(radius of wheel hub).

Parameters describing the (linear) friction characteristic were: c"15000 N s/m
(slope of the slip section), F

0
"1)07 N (mean part of the friction force for small

velocities).
Parameters describing the control system were (r

f
, u

f
)"(a, 0) (point where the

friction force acts), (r
c
, u

c
)"(a, n) (point where the control force acts for wheel

version). The ampli"cation a, phase-shift /, and "lter frequency u
MN

were varied
within wide ranges.

Only the "rst 5 modes were considered in the calculations. The properties of the
free wheel (no friction, no control) are shown in Table 1.
TABLE 1

Eigenfrequencies u
mn

and the Green1s function amplitudes g
mn

of the considered modes
( free wheel )

imag g
mn

(10~9 m/Ns) imag g
mn

(10~9 m/Ns)
m n u

mn
(2n s~1) real g

mn
(r
f
, u

f
; r

f
, u

f
) (r

f
, u

f
; r

c
, u

c
)

0 1 3020 0 1969 1969
1 1 2922 0 4124 !4124
2 1 3655 0 3472 3472
3 1 6482 0 2141 !2141
4 1 10 980 0 1409 1409
The growth rates d
mn

of the free wheel were varied by choosing di!erent sets of
modal loss factors. The value of d

mn
for a particular mode (m, n) is an important

parameter for the stability behaviour of that mode (see reference [5]). By varying
d
mn

, one can simulate wheels with di!erent combinations of stable and unstable
modes, and examine the performance of the control system operating under these
conditions.

6.1. WHEEL VERSION OF THE ACTIVE CONTROL SYSTEM

The motion of the controlled friction-driven wheel was analyzed with the two
methods described in Sections 3.1 and 4.1. The time history of the wheel velocity



722 M. A. HECKL AND X. Y. HUANG
was calculated with the iteration scheme of equations (3.2) and (3.3). During the
early stages of the time history, the control was absent, and it was switched on after
several periods of the oscillation. An example of a calculated time history is shown
in Figure 5. The solid curve gives the wheel velocity v

w
(r
f
, u

f
, t), the curve with the

long dash gives the friction force, F
f
(t), and the curve with the short dash gives the

control force, F (t).
Figure 5. Active control of the unstable mode (2, 1). The co-ordinate labels along the vertical axis
apply to the velocity (in 10~6 m/s), but not to the forces. The friction force and control force are
displayed with the same scale.

c

The control parameters used to produce this "gure were: /"n (phase-shift),
a"1)1c (ampli"cation), u

MN
"2n ) 3655 s~1 ("lter frequency, tuned to mode (2, 1)).

This is a case where the control is successful. Mode (2, 1) is unstable, and its
exponential growth can be seen in the "rst half of the time history during which
there is no control. The control system is switched on at a time about halfway along
the displayed time interval. The control force amplitude rapidly reaches a very large
value, but then decreases exponentially, together with the velocity amplitude,
during the second half of the displayed time interval.

More precise stability predictions, corroborating those from the time history
calculation, can be made from the eigenfrequency calculation for the friction-driven
wheel. Equation (4.3) was solved numerically to give the complex eigenfrequencies
W

mn
. Their real parts X

mn
and imaginary parts D

mn
are listed in Table 2 for the case

without control and with control (control parameters as above). Modes with
negative D

mn
are stable.



TABLE 2

Eigenfrequencies X
mn

and growth rates D
mn

of the friction-driven wheel (without and
with control ). ¹he growth rates d

mn
of the free wheel are also listed

Without control With control

m n d
mn

(s~1) X
mn

(2n s~1) D
mn

(s~1 ) X
mn

(2n s~1) D
mn

(s~1 )

0 1 !1328 2993 !1198 3010 !1415
1 1 !1285 2975 !599 2976 !98
2 1 !138 3637 498 3657 !221
3 1 !2859 6480 !2200 6466 !2596
4 1 !4829 10 979 !4103 10 947 !4108
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A large number of simulations with di!erent control parameters and di!erent
modal loss factors have been performed. The "ndings are summarized below.

If mode (M, N) is unstable, and the control system is tuned to that mode, then the
optimal phase-shift to control that mode is /"0 if M is odd, and /"n if M is
even. This is not surprising in the light of the stability predictions in Section 5 for an
isolated mode.

The presence of other modes (whether stable or unstable without control) has
a negative e!ect on the optimistic predictions of Section 5. The phase range, where
stability can be achieved for all modes, is no longer of width n, but signi"cantly
reduced. Also, the ampli"cation needs to be chosen more carefully: it still needs to
satisfy a'c, but with growing a-values there is an increased risk of previously
stable modes becoming unstable. This is because an increase in a enhances the
modal coupling brought about by the control system (see Section 2.3).

The modal coupling can work in one's favour if there are several unstable modes:
the control system can be tuned to only one of them, but careful choice of the
control parameters may control the other modes. One such example is shown in
Table 3. The control system parameters were: /"0)3n, a"2c, u

MN
"2n)6482 s~1

("lter frequency, tuned to mode (3, 1)).
TABLE 3

Eigenfrequencies X
mn

and growth rates D
mn

of the friction-driven wheel (without and
with control ). ¹he growth rates d

mn
of the free wheel are also listed

Without control With control

m n d
mn

(s~1) X
mn

(2n s~1) D
mn

(s~1 ) X
mn

(2n s~1) D
mn

(s~1 )

0 1 !1328 2993 !1198 3031 !1338
1 1 !1285 2975 !599 2913 !77
2 1 !184 3637 449 3756 !273
3 1 !244 6473 411 6295 !371
4 1 !4829 10 979 !4105 10 844 !4284
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Here, modes (2, 1) and (3, 1), which were unstable before the control, are
stabilized. As the number of unstable modes increases, it becomes more and more
di$cult to control them all. The following guideline can be given about the choice
of the control frequency u

MN
, if there are two (or more) unstable modes to be

controlled. The control is more likely to succeed, if it is tuned to the mode with the
highest unstable frequency; this tends to minimize contamination e!ects similar to
aliasing.

A very di$cult case to control is the one where there is one unstable mode and
one mode that is marginally stable and has a higher frequency. The control system
can only be tuned to the unstable mode, but it may be impossible to avoid exciting
the marginally stable mode, no matter how the control parameters are chosen.

6.2. RAIL VERSION OF THE ACTIVE CONTROL SYSTEM

This version of the control system was studied with the methods described in
Sections 3.2 and 4.2. The iteration scheme of equations (3.6) and (3.7) gave the time
history of the wheel velocity, and the numerical solution of equation (4.6) gave the
complex eigenfrequencies of the actively-controlled, friction-driven wheel. Again,
a large number of simulations have been carried out to study the performance of
this version of the control system and to compare it with the other version.

The optimal phase-shift to control a particular mode (M, N ) is /"0 for all
(M, N ). The minimum ampli"cation is a"1. The range of a- and /-values that give
stability for the controlled mode is very large and similar to the range found in
section 5.2 for an isolated mode. However, this version of the control system, too,
introduces coupling between the modes and a!ects the stability of the other modes.
Thus, the range of a- and /-values that give stability, not just for the controlled
mode but for all modes, is very much reduced and may be non-existent. Again,
a bene"cial side-e!ect of this modal coupling is the possibility of controlling two (or
more) unstable modes simultaneously. In such a case, the control system is best
tuned to the unstable mode that has the highest frequency.

We also studied the performance of the control system under non-linear
conditions, i.e., when the wheel oscillation has reached a stick/slip limit-cycle
oscillation. The time history for such a case is shown in Figure 6. A piecewise linear
friction characteristic (see Figure 3(b) in reference [5]) was used with the following
parameters:

c"15 000 N s/m (slope of the slip section),

C"!100000 N s/m (slope of the stick section),

<"50]10~6 m/s (crabbing speed, i.e. transition from slip to stick motion),

F
0
"1)07 N (mean part of the friction force for small velocities).

The velocity of the uncontrolled wheel is shown in the "rst two-thirds of the
displayed time history (solid line). The motion starts with an unstable amplitude



Figure 6. Active control of a limit-cycle oscillation. The co-ordinate labels along the vertical axis
apply to the wheel velocity and rail velocity (in 10~6 m/s), but not to the friction force.
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growth; during this stage the wheel performs an oscillatory slip-only motion. When
the velocity amplitude reaches the crabbing speed, an oscillatory stick/slip motion
sets in. This is a limit-cycle oscillation with a velocity amplitude given by the
crabbing speed <; the wheel is now driven by a non-linear friction force. The
start-up of the control system is during this limit-cycle oscillation, at time 0)006 s.
The control parameters are: /"0 (phase-shift), a"1)3 (ampli"cation), u

MN
"

2n ) 3655 s~1 ("lter frequency, tuned to mode (2, 1)).
The amplitude starts to decay and quickly reaches levels where the friction force

becomes linear again. Table 4 gives the corresponding linear data from the
eigenfrequency calculation and lists the frequencies and growth rates of the wheel
without and with control.
TABLE 4

Eigenfrequencies X
mn

and growth rates D
mn

of the friction-driven wheel (without and
with control ). ¹he growth rates d

mn
of the free wheel are also listed

Without control With control

m n d
mn

(s~1) X
mn

(2n s~1) D
mn

(s~1 ) X
mn

(2n s~1) D
mn

(s~1 )

0 1 !1328 2993 !1198 3000 !1324
1 1 !1258 2975 !599 2819 !1085
2 1 !115 3637 520 3651 !323
3 1 !2851 6480 !2200 6492 !1812
4 1 !4829 10 979 !4103 10 943 !4127



Figure 7. Model rig to simulate: (a) wheel crabbing, and (b) its active control.
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The wheel version of the active control system has also been found to work under
non-linear conditions. For example, the limit-cycle oscillation in Figure 6 can be
suppressed by a contol system with the parameters /"n, a"1)3 c, u

MN
"

2n ) 3655 s~1 ("lter frequency, tuned to mode (2, 1)).

7. EXPERIMENTAL RIG

The experimental rig, shown schematically in Figure 7(a), simulates curve squeal
produced by wheel crabbing. The model wheel is a #at circular steel disc with a hub
at the centre. Its measurements are given in Section 6. It is held by an axle at the
centre, allowed to rotate, and rolls on the turntable of an old record player, which
represents the rail.

The angle between the plane of the wheel and the tangent to the wheel's circular
path on the turntable can be varied smoothly between !45 and 453. If this angle is
zero, i.e., if the wheel is aligned tangentially with its circular path, there is no friction
force perpendicular to the wheel, and no squeal noise is heard. For all other angles,
the friction force does have a perpendicular component, and this gives rise to squeal
noise. The normal load acting on the wheel can also be varied; this is done with
a vertical compression spring pressing down on the wheel axle. This normal load
needs to have a minimum value for squeal to be produced; the intensity of the
squeal increases with increasing normal load. The wheel squeals at a single
frequency of about 6800 Hz, which is that of mode (3, 1). The frequency spectrum of
the squeal noise is shown in Figure 8.

The active control system, shown in Figure 7(b), was applied to the wheel. It
had the following components. A microphone picked up the squeal noise.
The microphone signal was fed into a variable-phase oscillator (model VPO 602,
from Feedback) that had the dual role of narrowband "lter and phase-shifter. It
generated a phase-shifted single-frequency signal relative to its input signal, and
had to be &&tuned in'' to the frequency of the squeal. The oscillator output was fed



Figure 8. Frequency spectrum of the squeal noise.
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into an ampli"er (120 W power slave ampli"er, type US4, from ILP electronics),
and its output gave the control signal.

The transducer to apply the control force was a piezo-"lm actuator (type DT1-
052K, from Elf Atochem) attached with double-sided tape to the wheel. The "lm
was excited by the control signal to perform an in-plane motion (shrinking and
stretching with the frequency of the squeal), and this forced bending oscillations in
the wheel. The wheel was rotating, and in order to keep the point of the control
force reasonably stationary relative to the point of the friction force, the following
arrangement was designed. Five identical piezo-"lms were attached along a ring
close to the outer edge of the wheel (see Figure 7(b)), but only one of them, the one
closest to the contact point with the turntable, was active. An alternator (in line
with the axle of the wheel) with a brush was used to switch the control signal from
one piezo-"lm to the next as the wheel was rotating.

The squeal noise could be controlled, and even completely annulled, with this
model control system. However, it was rather unreliable, and only worked for
squeal noise of a low intensity. This weakness was not due to the method in
principle, but to the delicacy of the piezo-"lms used. Although they were driven at
(and beyond) their power limits, they were often not strong enough to deliver the
required control force amplitudes. Nevertheless, we have experimentally veri"ed
that curve squeal can be suppressed by an active control system.
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8. CONCLUSIONS

The squeal noise that is produced by trains traversing a curve is due to unstable
bending oscillations of individual train wheels. These oscillations can be suppressed
by a special form of active control. A sensor picks up the wheel's bending velocity
(or a measure of it) and passes it to a narrow-band "lter tuned to the squeal
frequency (or one of the squeal frequencies if there are several peaks in the
spectrum). The output signal, which is a single-frequency signal, is then phase-
shifted and ampli"ed. The resulting control signal drives an actuator, which may be
attached to the wheel or to the rail. Both versions of the active control system were
studied theoretically by a detailed mathematical model that was used for numerical
simulations. According to these simulations, which were performed for a model
wheel with several bending modes, both versions can achieve total control of the
squeal noise, even when the phase-shift and ampli"cation deviate from the
optimum values.

A feature of this control system is that it can be tuned to the frequency of only
one bending mode, yet it causes coupling between all modes. The mode coupling is
usually detrimental in that it can destabilize previously stable modes. Care has to
be taken to "nd values for phase-shift and ampli"cation that give control of all
modes. This becomes di$cult if the squealing wheel has marginally stable modes in
addition to the one that is to be controlled. It may even be impossible in such cases
to achieve control for all wheel modes. The easiest case to control is that of a wheel
with one unstable mode amongst "rmly stable modes. On the other hand, the
modal coupling can be bene"cial and control two simultaneously unstable modes
by tuning the control to one of them, usually the one with the higher frequency.

The active control system works for all amplitude ranges of the oscillating wheel
and can operate under linear and non-linear conditions. In the early, linear, stages
of an instability, when the wheel oscillates with small, but increasing, amplitude, the
control system can reverse the amplitude increase, thus preventing the build-up of
a high-intensity squeal noise. During a high-intensity squeal noise, the wheel
performs a limit-cycle oscillation with a large amplitude and is, mathematically
speaking, driven non-linearly. Even in this situation, the active control system can
be applied successfully to bring about a swift amplitude decay.

The energy requirements of the active control system are not constant but decay
with the amplitude of the wheel oscillation. The requirements are high initially if
a fully developed squeal is to be suppressed. They are considerably smaller if the
active control system operates on an ongoing basis, ready to quash an instability as
soon as it becomes detectable.

The theoretically predicted e!ectiveness of our active contol system has been
con"rmed experimentally by a small-scale model rig, representing the wheel
version. A more robust rig would demonstrate its e!ectiveness in the harsh
environment of train wheels and rails. It would also allow research into other
friction-related questions, such as whether the active control reduces the wear that
wheels su!er during curve negotiation.

An extension (which involves a little more technology) of our active control
method would be a branched feedback loop, which controls each mode of the
squealing wheel individually. The signal from the sensor would be divided up into
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the modal components; these are individually phase-shifted and ampli"ed, and
subsequently combined to be fed into the actuator. It is likely that this branched
active control system is immune against unwanted interference between the modes,
making it easier to achieve control for all modes of the squealing wheel.
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APPENDIX A: DERIVATION OF THE EQUATION FOR THE COMPLEX
EIGENFREQUENCIES OF THE CONTROLLED FRICTION-DRIVEN WHEEL

We restrict our considerations to a wheel with a "nite number of modes,

m"0,2, k, n"1,2, l. (A1)
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Its Green's function, or displacement response to an impulse force at point (r
f
, u

f
)

at time t@, is then given by equation (2.2a) with its sums truncated; to allow the
subsequent manipulations, the real part of the complex term is expressed as half the
sum of the complex term and its complex conjugate,

G (r, u; r
f
, u

f
; t!t@ )"

1
2

k
+

m/0

l
+
n/1

(g
mn

(r, u; r
f
, u

f
)e~*tmn(t~t{)

#g*
mn

(r, u; r
f
, u

f
)e*t*

mn(t~t{)). (A2)

By analogy, the displacement w(t) of the controlled friction-driven wheel at point
(r
f
, u

f
) is also written as a superposition of modes,

w(t)"
1
2 Cw0

#w*
0
#

k
+

m/0

l
+
n/1

(w
mn

e~*Wmn t#w*
mn

e*W*
mn t )D . (A3)

The complex frequencies W
mn

, the corresponding complex amplitudes w
mn

, and the
constant term w

0
are unknown at this stage and will be determined from the

governing equations (2.3) and (2.6) respectively for versions 1 and 2 of the active
control system.

The velocity corresponding to the displacement w(t) is

v
w
(r
f
, u

f
, t)"wR (t), (A4)

hence, by di!erentiation of equation (A3),

v
w
(r
f
, u

f
, t)"

1
2

k
+

m/0

l
+
n/1

(!iW
mn

w
mn

e~*Wmn t#iW*
mn

w*
mn

e*W*
mn t ). (A5)

The control signal amplitude A
MN

(t@ ), given by equation (2.9), can also be written as
a modal superposition by substituting for v

w
(r
f
, u

f
, t) with equation (A5) and

evaluating the integral over t; the result is

A
MN

(t@)"
1

¹
MN
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+

m/0

l
+
n/1
C

W
mn
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MN
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MN
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mnTMN )e* (W*
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A.1. WHEEL VERSION OF THE ACTIVE CONTROL SYSTEM

The governing equation (2.3) is evaluated at point (r
f
, u

f
), and the velocity on the

left-hand side is replaced by the displacement derivative, according to (A4). The
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t-dependence of the resulting equation is in terms of t-derivatives (indicated by
dots) only; the equation can thus be integrated with respect to time t, to give

w(t)"P
t

t{/0

(F
f
[v

w
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f
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, t@ )]G(r

f
, u

f
; r

f
, u
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#F
c
(t@ )G (r

f
, u

f
; r

c
, u

c
; t!t@)) dt@. (A7)

The integration constant is ignored as there is a constant term, 1
2
(w

0
#w*

0
),

included in the expression (A3) for the wheel displacement. Equation (A7) is an
integrodi!erential equation of the Volterra type for the displacement of the
controlled, friction-driven wheel. It is solved by expressing all functions of t and t@
by modal superpositions. Expression (A3) is substituted into the left-hand side of
equation (A7). Substituted into the right-hand side of equation (A7) are: (i) the
linear friction characteristic (4.2) with equation (A5) for the wheel velocity, (ii) the
control force (2.5) (real part replaced by the usual expression involving the complex
conjugate) with equation (A6) for the control signal amplitude A

MN
(t@) (the

expression for F
c
can be simpli"ed with e$i(~uMN`(2n@TMN))"1), and (iii) the Green's

function (A2) evaluated at the points (r
f
, u

f
) and (r

c
, u

c
). The resulting equation is
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where the following abbreviations have been used for the Green's function amplitudes:
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A number of lengthy, by straightforward, manipulations follow, which are not
shown here. They include: multiplying out the brackets in the integrand, putting the
t-dependent terms outside the integral, performing the integration over the
t@-dependent terms to obtain new t-dependent terms, multiplying both sides of the
equation by 2, and sorting the terms on the right-hand side into constant terms and
terms with factors e~*Wmn t, e*W*

mn t, e~*tm{n{ t, e*t*
m{n{ t. The "nal result is

w
0
#w*

0
#

k
+

m/0

l
+
n/1

(w
mn

e~*Wmn t#w*
mn

e*W*
mn t )

"

k
+

m{/0

l
+

n{/1
Ag(f )

m{n{

F
0

it
m{n{

#g( f )*
m{n{

F
0

!it*
m{n{
B

#

k
+

m/0

l
+
n/1

e~*Wmn tW
mn

w
mn G

1
2

c
k
+

m{/0

l
+

n{/1
A

g(f )
m{n{

W
mn
!t

m{n{

#

g(f )*
m{n{

W
mn
#t*

m{n{
B

#

1
2

a
¹

MN

1
i
(1!e*WmnTMN) A!

e~*(

W
mn
!(2n/¹

MN
)
!

e*(
W
mn
#(2n/¹

MN
)B

]
k
+

m{/0

l
+

n{/1
A

g(c)
m{n{

W
mn
!t

m{n{

#

g(c)*
m{n{

W
mn
#t*

m{n{
BH

#

k
+

m/0

l
+
n/1

e*W*
mn tW*

mn
w*

mnG
1
2

c
k
+

m{/0

l
+

n{/1
A

g(f )
m{n{

W*
mn
#t

m{n{

#

g(f )*
m{n{

W*
mn
!t*

m{n{
B

#

1
2

a
¹

MN

1
i
(1!e~*W*

mnTMN) A
e~*(

W*
mn
#(2n/¹

MN
)
#

e*(
W*

mn
!(2n/¹

MN
)B

]
k
+

m{/0

l
+

n{/1
A

g(c)
m{n{

W*
mn
#t

m{n{

#

g(c)*
m{n{

W*
mn
!t*

m{n{
BH

#

k
+

m{/0

l
+

n{/1

e~*tm{n{ tGg(f )
m{n{ C

!F
0

it
m{n{

#

1
2

c
k
+

m/0

l
+
n/1
A

W
mn

w
mn

t
m{n{

!W
mn

!

W*
mn

w*
mn

t
m{n{

#W*
mn
BD

#

1
2

a
¹
MN

1
i
g(c)
mn

k
+

m/0

l
+
n/1
C
W
mn

w
mn

(1!e*WmnTMN)
t
m{n{

!W
mn

]A!
e~*(

W
mn
!(2n/¹

MN
)
!

e*(
W
mn
#(2n/¹

MN
)B



CURVE SQUEAL OF TRAINS 733
!

W*
mn

w*
mn

(1!e~*W*
mnTMN )

i (t
m{n{

#W*
mn

) A
e~*(

W*
mn
#(2n/¹

MN
)
#

e*(
W*

mn
!(2n/¹

MN
)BDH

#

k
+

m{/0

l
+

n{/1

e*t*
m{n{ tGg(f )

m{n{ C
F
0

it*
m{n{

!

1
2

c
k
+

m/0

l
+
n/1
A

W
mn

w
mn

t*
m{n{

#W
mn

#

W*
mn

w*
mn

!t
m{n{

#W*
mn
BD

#

1
2

a
¹
MN

1
i
g(c)*
mn

k
+

m/0

l
+
n/1
C
W
mn

w
mn

(1!e*WmnTMN)
!t

m{n{
!W

mn

]A!
e~*(

W
mn
!(2n/¹

MN
)
!

e*(
W
mn
#(2n/¹

MN
)B

!

W*
mn

w*
mn

(1!e~*W*
mnTMN )

i (!t*
m{n{

#W*
mn

) A
e~*(

W*
mn
#(2n/¹

MN
)
#

e*(
W*

mn
!(2n/¹

MN
)BDH . (A10)

This equation is satis"ed if the constant terms as well as the coe$cients of e~*Wmn t,
e*W*

mn t, e~*tm{n{t and e*t*
m{n{t are equal on either side of the equation.

Equating the coe$cients of e~*Wmn t gives
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(m"0,2k, n"1,2, l). (A11)

This is a non-linear equation for the complex eigenfrequencies W
mn

; it also has roots
!W*

mn
(m"0,2k, n"1,2, l). For the uncontrolled wheel (a"0), it reduces to

an equation which is equivalent to a polynomial equation of degree 2kl. The
equation is best solved numerically, for example with the Newton/Raphson
method. A suitable starting value of the iteration would be W

mn
"t

mn
/

(1!1
2
cg(f )

mn
). This is the analytical estimate of the complex eigenfrequency of the

uncontrolled friction-driven wheel (see equation (3.13) in reference [13]). It does
not seem possible to derive from equation (A11) an equivalent analytical estimate
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for the controlled case. The result (A11) is stated by equations (4.3) and (4.4) in the
main text.

Equating the coe$cients of e*W*
mn t in equation (A10) gives the complex conjugate

of equation (A11). Equating the constants on either side of equation (A10) gives an
explicit expression for real (w

0
). Equating the coe$cients of e~*tm{n{t and e*t*

m{n{t gives
a linear set of equations for the complex amplitudes w

mn
and w*

mn
.

A.2. RAIL VERSION OF THE ACTIVE CONTROL SYSTEM

The mathematical arguments for this version of the active control system are
directly analogous to those described in the previous section. The governing
equation (2.6) can be written with (A4) as
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Expression (A3) is substituted into the left-hand side of equation (A12). Substituted
into the right-hand side of equation (A12) are the friction characteristic (4.5) and the
Green's function (A2) evaluated at point (r

f
, u

f
). Substituted into the argument of

the friction characteristic are equation (A5) for the wheel velocity, and equation
(2.7) for the rail velocity, where the control signal amplitude A

MN
(t@) has been

expressed by equation (A6). The resulting equation is
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This result is very similar to its equivalent (A8) for the wheel version of the active
control system; in fact, if the following replacements are made in equation (A8),

aP!ac and g(c)
m{n{

Pg(f )
m{n{

, (A14a, b)

equation (A13) is obtained. It is therefore not necessary to derive the equation for
the complex eigenfrequencies W

mn
by the lengthy manipulations outlined in the

previous section. Instead, the equation can be constructed from equation (A11) by
making the replacements (A14a, b). The result is
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This result is stated by equation (4.6) with equation (4.4) in the main text.
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